World Library  
Flag as Inappropriate
Email this Article

Ultrasonic testing

Article Id: WHEBN0003092216
Reproduction Date:

Title: Ultrasonic testing  
Author: World Heritage Encyclopedia
Language: English
Subject: Ultrasonic thickness measurement, Phased array ultrasonics, Acoustic resonance technology, Terahertz nondestructive evaluation, Internal rotary inspection system
Publisher: World Heritage Encyclopedia

Ultrasonic testing

An example of Ultrasonic Testing (UT) on blade roots of a V2500 IAE aircraft engine.
Step 1: The UT probe is placed on the root of the blades to be inspected with the help of a special borescope tool (video probe).
Step 2: Instrument settings are input.
Step 3: The probe is scanned over the blade root. In this case, an indication (peak in the data) through the red line (or gate) indicates a good blade; an indication to the left of that range indicates a crack.
Principle of ultrasonic testing. LEFT: A probe sends a sound wave into a test material. There are two indications, one from the initial pulse of the probe, and the second due to the back wall echo. RIGHT: A defect creates a third indication and simultaneously reduces the amplitude of the back wall indication. The depth of the defect is determined by the ratio D/Ep

Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors.


On May 27, 1940, U.S. researcher Dr. Floyd Firestone of the University of Michigan applies for a U.S. invention patent for the first practical ultrasonic testing method. The patent is granted on April 21, 1942 as U.S. Patent No. 2,280,226, titled "Flaw Detecting Device and Measuring Instrument". Extracts from the first two paragraphs of the patent for this entirely new nondestructive testing method succinctly describe the basics of such ultrasonic testing. "My invention pertains to a device for detecting the presence of inhomogeneities of density or elasticity in materials. For instance if a casting has a hole or a crack within it, my device allows the presence of the flaw to be detected and its position located, even though the flaw lies entirely within the casting and no portion of it extends out to the surface. ... The general principle of my device consists of sending high frequency vibrations into the part to be inspected, and the determination of the time intervals of arrival of the direct and reflected vibrations at one or more stations on the surface of the part."

James F. McNulty of Automation Industries, Inc., then, in El Segundo, California, an early improver of the many foibles and limits of this and other nondestructive testing methods, teaches in further detail on ultrasonic testing in his U.S. Patent 3,260,105 (application filed December 21, 1962, granted July 12, 1966, titled “Ultrasonic Testing Apparatus and Method”) that “Basically ultrasonic testing is performed by applying to a piezoelectric crystal transducer periodic electrical pulses of ultrasonic frequency. The crystal vibrates at the ultrasonic frequency and is mechanically coupled to the surface of the specimen to be tested. This coupling may be effected by immersion of both the transducer and the specimen in a body of liquid or by actual contact through a thin film of liquid such as oil. The ultrasonic vibrations pass through the specimen and are reflected by any discontinuities which may be encountered. The echo pulses that are reflected are received by the same or by a different transducer and are converted into electrical signals which indicate the presence of the defec.”

How it works

At a construction site, a technician tests a pipeline weld for defects using an ultrasonic phased array instrument. The scanner, which consists of a frame with magnetic wheels, holds the probe in contact with the pipe by a spring. The wet area is the ultrasonic couplant that allows the sound to pass into the pipe wall.
Non-destructive testing of a swing shaft showing spline cracking

In ultrasonic testing, an ultrasound transducer connected to a diagnostic machine is passed over the object being inspected. The transducer is typically separated from the test object by a couplant (such as oil) or by water, as in immersion testing. However, when ultrasonic testing is conducted with an Electromagnetic Acoustic Transducer (EMAT) the use of couplant is not required.

There are two methods of receiving the ultrasound waveform: reflection and attenuation. In reflection (or pulse-echo) mode, the transducer performs both the sending and the receiving of the pulsed waves as the "sound" is reflected back to the device. Reflected ultrasound comes from an interface, such as the back wall of the object or from an imperfection within the object. The diagnostic machine displays these results in the form of a signal with an amplitude representing the intensity of the reflection and the distance, representing the arrival time of the reflection. In attenuation (or through-transmission) mode, a transmitter sends ultrasound through one surface, and a separate receiver detects the amount that has reached it on another surface after traveling through the medium. Imperfections or other conditions in the space between the transmitter and receiver reduce the amount of sound transmitted, thus revealing their presence. Using the couplant increases the efficiency of the process by reducing the losses in the ultrasonic wave energy due to separation between the surfaces.



  1. High penetrating power, which allows the detection of flaws deep in the part.
  2. High sensitivity, permitting the detection of extremely small flaws.
  3. Only two nonparallel surfaces need to be accessible.
  4. Greater accuracy than other nondestructive methods in determining the depth of internal flaws and the thickness of parts with parallel surfaces.
  5. Some capability of estimating the size, orientation, shape and nature of defects.
  6. Non hazardous to operations or to nearby personnel and has no effect on equipment and materials in the vicinity.
  7. Capable of portable or highly automated operation.
  8. Results are immediate. Hence on the spot decisions can be made.


  1. Manual operation requires careful attention by experienced technicians. The transducers alert to both normal structure of some materials, tolerable anomalies of other specimens (both termed “noise”) and to faults therein severe enough to compromise specimen integrity. These signals must be distinguished by a skilled technician, possibly requiring follow up with other nondestructive testing methods.[1]
  2. Extensive technical knowledge is required for the development of inspection procedures.
  3. Parts that are rough, irregular in shape, very small or thin, or not homogeneous are difficult to inspect.
  4. Surface must be prepared by cleaning and removing loose scale, paint, etc., although paint that is properly bonded to a surface need not be removed.
  5. Couplants are needed to provide effective transfer of ultrasonic wave energy between transducers and parts being inspected unless a non-contact technique is used. Non-contact techniques include Laser and Electro Magnetic Acoustic Transducers (EMAT).
  6. Inspected items must be water resistant, when using water based couplants that do not contain rust inhibitors.


International Organization for Standardization (ISO)
  • ISO 7963, Non-destructive testing - Ultrasonic testing - Specification for calibration block No. 2
  • ISO/DIS 11666, Non-destructive testing of welds - Ultrasonic testing of welded joints - Acceptance levels
  • ISO/DIS 17640, Non-destructive testing of welds - Ultrasonic testing of welded joints
  • ISO 22825, Non-destructive testing of welds - Ultrasonic testing - Testing of welds in austenitic steels and nickel-based alloys
European Committee for Standardization (CEN)
  • EN 583, Non-destructive testing - Ultrasonic examination
  • EN 1330-4, Non destructive testing - Terminology - Part 4: Terms used in ultrasonic testing
  • EN 1712, Non-destructive testing of welds - Ultrasonic testing of welded joints - Acceptance levels
  • EN 1713, Non-destructive testing of welds - Ultrasonic testing - Characterization of indications in welds
  • EN 1714, Non-destructive testing of welds - Ultrasonic testing of welded joints
  • EN 12223, Non-destructive testing - Ultrasonic examination - Specification for calibration block No. 1 is replaced by the EN ISO 2400:2012 "Non-destructive testing - Ultrasonic testing - Specification for calibration block No. 1"
  • EN 12668-1, Non-destructive testing - Characterization and verification of ultrasonic examination equipment - Part 1: Instruments
  • EN 12668-2, Non-destructive testing - Characterization and verification of ultrasonic examination equipment - Part 2: Probes
  • EN 12668-3, Non-destructive testing - Characterization and verification of ultrasonic examination equipment - Part 3: Combined equipment
  • EN 12680, Founding - Ultrasonic examination
  • EN 14127, Non-destructive testing - Ultrasonic thickness measurement

See also


  1. ^ U.S. Patent 3,260,105 for Ultrasonic Testing Apparatus and Method to James F. McNulty at lines 37-48 and 60-72 of Column 1 and lines 1-4 of Column 2.

Further reading

  • Albert S. Birks, Robert E. Green, Jr., technical editors ; Paul McIntire, editor. Ultrasonic testing, 2nd ed. Columbus, OH : American Society for Nondestructive Testing, 1991. ISBN 0-931403-04-9.
  • Josef Krautkrämer, Herbert Krautkrämer. Ultrasonic testing of materials, 4th fully rev. ed. Berlin; New York: Springer-Verlag, 1990. ISBN 3-540-51231-4.
  • J.C. Drury. Ultrasonic Flaw Detection for Technicians, 3rd ed., UK: Silverwing Ltd. 2004. (See Chapter 1 online (PDF, 61 kB)).
  • Nondestructive Testing Handbook, Third ed.: Volume 7, Ultrasonic Testing. Columbus, OH: American Society for Nondestructive Testing.
  • Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform measurement, Volume 31, Issue 2, March 2002, Pages 77–91, L. Angrisani, L. Bechou, D. Dallet, P. Daponte, Y. Ousten

External links

  • Ultrasonic testing
  • Film about Russian ultrasonic testing unit ASK-132 in Kalinin NPP
  • Ultrasonic Testing on
  • Video on ultrasonic testing, Karlsruhe University of Applied Sciences
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.